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Abstract

With the introduction of quantum comput-
ing, the inherent security of the TLS pro-
tocol becomes endangered. Risks of los-
ing the privacy and integrity of communi-
cations over the internet are too great to
not consider preventative measures against
quantum attacks. We look at the current
key exchange protocol for TLS to deter-
mine the flaws caused by quantum com-
puters. Our research focuses on analysing
current alternatives that are quantum se-
cure as well as other cryptographic meth-
ods that have not yet been considered for a
post-quantum TLS. We offer final recom-
mendations on where the TLS community
should go from now in order to mitigate
the risk of the quantum menace.

1 Introduction

The primary goal of the TLS protocol is to provide
privacy and data integrity between two communi-
cating applications (Dierks and Rescorla, 2008).
With TLS, clients and servers are able to securely
communicate with one another with little to no
risk of having a third party read or alter their mes-
sages. TLS is used widely across the internet and
is essentially the defacto standard for secure com-
munications, often even being implemented into
applications where an alternative protocol may be
more useful. In order of priority, the makers of
TLS desire cryptographic security, interoperabil-
ity, extensibility, and relative efficiency. The secu-
rity behind TLS is based off of a number of secure
algorithms based off of hashing, symmetric cryp-
tography, prime-factorization, elliptic curves, and
other cryptographic methods.

Notably, there are essentially two portions of
the TLS protocol that use these algorithms for
either key exchange or for authentication. The

key exchange allows for the two users to initi-
ate a channel of communication and securely talk
with one another. The authentication allows for
proving that users are who they say that they are.
While TLS is considered secure by todays stan-
dards, there are actually some risks that most ei-
ther do not realize or do not care about. That is,
the Quantum Menace. With the introduction of
quantum computing, the inherent security of many
widespread algorithms is at risk of being broken.
Specifically for TLS, things such as ECDH, RSA,
and DSA can be brute forced with much better ef-
ficiency with a quantum algorithm known as Shors
Algorithm. Luckily enough, quantum comput-
ers are still in their early stages and some sug-
gest that quantum computers will never be pow-
erful enough to break our current level cryptogra-
phy. However, because we as security researchers
would rather focus on proactive measures rather
than reactive ones, we want to find alternatives be-
fore there is capable quantum computing.

Specifically, we are going to focus on finding
solutions for key exchange rather than authenti-
cation, because a broken key exchange allows for
attackers to read past communications. In terms
of security of the communication over the inter-
net, focusing on privacy is more essential than data
integrity. In this paper, we go about analyzing a
number of post-quantum secure TLS implementa-
tions as well as potential alternative cryptographic
methods that have not yet been implemented into
TLS. We finalize this analysis with a comparison
between post-quantum TLS methods in order to
determine where the security community should
be heading towards.

2 Post Quantum Computing

Quantum computing is slowly gaining traction
since it was theorized in 1982 by Richard Feyn-
man. It relies on quantum principles and super po-
sitioning of particles to perform computational op-



erations significantly faster than classical comput-
ers (Feynman, 1982). There already exist quan-
tum algorithms, which use quantum logic gates
to solve problems that were once thought com-
putationally unsolvable. One of these algorithms,
Shor’s Algorithm, is able to easily determine the
prime factors of a large number (i.e. integer fac-
torization) within a polynomial time (Shor, 1999).
Before this algorithm, integer factorization was
considered non-polynomial, also known as NP,
such that given a NP problem, one could verify its
solutions quickly but it could not be solved within
a reasonable time, often taking longer than the ex-
pected lifespan of the universe to solve (Ladner,
1975). This is a major problem for the security
of many of today’s technologies which rely on the
hardness of prime factorization.

While quantum computers are only in their in-
fantile stage, the potential security risks behind
broken encryption schemes from quantum algo-
rithms would be unfathomable in today’s world.
If anybody were able to obtain a quantum com-
puter capable of performing significant computa-
tions, breaking into many secure systems would
be completely feasible. As mentioned earlier, TLS
uses ECDH, RSA, and DSA for the key exchange
protocol in TLS, to name a few. ECDH is reliant
on elliptic curve cryptography, which requires low
computing power for implementation but massive
amounts to brute force an attempt to break it.
However, a modified Shor’s algorithm could no-
tably decrease the computational requirement for
a brute force attempt (Sullivan, 2013). With a
working quantum computer capable of significant
computation, any current and previous TLS com-
munications could be viewed by attacking the key
exchange protocol.

However, there still exist a number of
cryptographic systems that are actually se-
cure against quantum attacks. These include:
hash-based cryptography, code-based cryptog-
raphy, lattice-based cryptography, multivariate-
quadratic-equations cryptography, and secret-key
cryptography.

2.1 Hash-Based Cryptography

With hashing, when given an input x there will be
an output y that should not be able to easily go
back to find x. Before the interest in postquan-
tum security, many researchers didnt focus much
on hash-based cryptography because of the limit

on the number of signatures that can exist for a
generated key, even with the existence of loga-
rithmically scaling Merkle trees. Also, with hash-
ing, we can turn one-time hashing into multiple by
adding new public keys in each message, which is
also known as chaining. By doing this, the signa-
ture of the nth message includes all n-1 previous
signed messages. With Merkle Trees, it is possi-
ble to have provable reductions that say that the
security of the single-signing function will be the
same security as the tree. One of the potential
drawbacks of hashing is the fact that over time,
researchers will eventually find ways to produce
collisions, which can map two different inputs to
the same output. This is why the security commu-
nity often is always looking for a new and better
hash function.

2.2 Code-Based Cryptography
The methods often considered with code-based
cryptography is McEliece and Niederreiter. With
these, the public key is made up of a dt x n ma-
trix K and a message m is encrypted by multiply-
ing this matrix K by m. The receiver will receive
a Hidden Goppa code to decrypt this message.
These cryptographic systems have extremely ef-
ficient key generation, encryption, and decryption.
However, often the problem is the very long public
keys required.

2.3 Lattice-Based Cryptography
Lattices have gotten a lot of attention from the
postquantum community and a majority of cur-
rent quantum-secure systems are done with lattice
cryptosystems. Lattices are reliant on the Short-
est Vector Problem and the Closest Vector Prob-
lem, which have not yet been reduced to a polyno-
mial time to break. There are a number of different
methods including NTRU, LWE, and BLISS.

2.4 Multivariate-Quadratic-Equations
Cryptography

These rely on a sequence of polynomials and vari-
ables with coefficients. Each polynomial is re-
quired to have a degree of at most 2, with no
squared terms. Its possible to verify these signa-
tures with a standard hash function, which will
result in shorter public keys. There are quite a
number of current methods including: Rainbow,
Hidden Field Equations (HFE), and UOV Cryp-
tosystems. One of the major problems with these
systems is that, while efficient, the security is not



fully understood and new attacks are found on a
regular basis.

2.5 Secret-Key Cryptography

Otherwise known as symmetric cryptography,
this uses either Stream Ciphers or Block Ci-
phers. These cryptosystems are widely used
and implemented including: Twofish, Serpent,
AES (Rijndael), Blowfish, CAST5, Kuznyechik,
RC4, 3DES, Skipjack, Safer+/++ (Bluetooth),
and IDEA. There already exist some symmet-
ric key management systems like Kerberos and
3GPP, which offers the benefit of already being
widespread.

3 PQC in TLS

3.1 TLS Specifics

Although many post-quantum cryptosystems have
been proposed by researchers, not all are ready for
widespread deployment. Cryptographic software
needs to be carefully written to avoid so called
side-channel attacks, which can introduce vulner-
abilities into an otherwise secure protocol. Fur-
thermore, in order for a cryptographic library to
be useful to the larger programming community,
it should expose a simple interface to allow easy
integration into software projects.

3.2 Criteria

Although many post-quantum cryptosystems have
been proposed by researchers, not all are ready for
widespread deployment in TLS. When developers
need to include a secure communication channel
in their software, they use libraries that expose
a high-level interface, rather than directly calling
cryptographic primitives themselves. Therefore, a
post-quantum key-exchange protocol is likely to
be integrated into software only if is packaged
into such a library, like OpenSSL. Furthermore,
cryptography code needs to be written to be re-
sistant to timing attacks, which allow an adversary
to recover secret data from a cryptosystem even if
the protocol itself is theoretically secure. Attack-
ers targeting a software implementation have ac-
cess to additional information than security proofs
model. Such vulnerabilities often arise from al-
tering program control-flow based on secret data,
for example performing a computation only when
a certain bit of the secret key is set.

TLS implementations have been successfully
exploited by timing-attacks. For example, Canvel,

Hiltgen, Vaudenay, and Vaugnoux (Canvel et al.,
2003) were able to intercept passwords in a TLS
channel by measuring differences in timing arising
from whether or not a forged message authentica-
tion code (MAC) is valid. This attack was possi-
ble even though Krawczyk (Krawczyk, 2001) had
proven that the way MACs are validated is secure.

Due to the effectiveness of these attacks, we
only consider a protocol to be ready for TLS
deployment if it has been implementing to be
resistant to timing attacks. Programmers typi-
cally achieve protection against timing attacks by
writing constant-time programs, that is, programs
whose runtime do not depend on secret day. This
involves avoiding branching on secret data as de-
scribed above, but also requires avoiding mem-
ory accesses based on secret data, since recently-
accessed data stored in the cache can be read faster
than data from main memory (Bernstein, 2005).

4 Current Implementations

In this section we investigate post-quantum cryp-
tosystems which have implementations targeting
TLS.

In 2015, Bos, Costello, Naehrig, and Stebila
(Bos et al., 2015) constructed TLS ciphersuites
with post-quantum key-exchange. Their key-
exchange protocol is based on the ring learning
with errors (R-LWE) problem, which is related
to the shortest vector problem on lattices. The
authors integrate four ciphersuites targeting the
128-bit security level into OpenSSL. The first
two, RLWE-ECDSA-AES128-GCM-SHA256
and RLWE-RSA-AES128-GCM-SHA256, sim-
ply replace a classical key-exchange protocol with
their post-quantum protocol. The other two are
hybrid ciphersuites, which combine their R-LWE
protocol with elliptic curve DiffieHellman key
exchange. Their performance results, in HTTPS
connections per second, are shown in Figure 1.

Later in 2015, Alkim, Ducas, Pppelmann, and
Schwabe identified a number of performance and
security problems with the BCNS protocol. By
performing a more detailed security analysis, the
authors were able to optimize the parameters of
the protocol, resulting in higher efficiency and
security. Further, the authors suggest replacing
a fixed public parameter with a randomly cho-
sen one for each key exchange, avoiding Logjam-
style precomputation attacks (Adrian et al., 2015).
The authors provide a C implementation of their



Figure 1: BCNS HTTPS connections per second supported by a web server (Bos et al., 2015)

new protocol, NewHope, but do not integrate their
work into OpenSSL.

The absence of a NewHope-based TLS cipher-
suite implementation did not stop Google from in-
tegrating it into their Chrome web browser (Lang-
ley, 2016). To retain classical security, the Chrome
team combined NewHope with the X25519 el-
liptic curve DiffieHellman key-exchange protocol,
creating a hybrid scheme they called CECPQ1.
Because the project was only an experiment,
CECPQ1 has since been removed from Chrome,
but the expirement was successful. Adding an ad-
ditional key-exchange protocol to TLS resulted in
increased packet sizes and latencies, but this was
expected. No unexpected problems arose, show-
ing that deploying NewHope in TLS is feasible.

Because NewHope is such a new protocol, the
Chrome engineers did not want their CECPQ1
protocol to become a standard (Langley, 2016).
In fact, recent research has made improvements
to the NewHope key-exchange protocol. Bos et
al. (Bos et al., 2016) suggest basing cryptosys-
tems on the learning with errors (LWE) problem,
rather than R-LWE, developing a protocol called
Frodo, which they integrate into OpenSSL. Al-
though R-LWE allows for more efficient proto-
cols, the additional ring structure may introduce
new vulnerabilities. On the other hand, Longa and
Naehrig (Longa and Naehrig, 2016) develop new
algorithms which speed up NewHope by a factor
of up to 1.4. A library implementing these, Lat-

ticeCrypto techniques is integrated into OpenSSL
(Microsoft, 2016).

An alternative lattice-based cryptosystem,
NTRU, was described by Hoffstein, Pipher, and
Silverman in 1998. NTRU was patented for most
of its lifetime, but was recently made patent-free
(?), enabling wider adoption of the public-key
encryption system. Recent research by Bernstein,
Chuengsatiansup, Lange, and van Vredendaal
(Bernstein et al., 2016) has improved the security
and performance of the cryptosystem. NTRU has
been integrated into the wolfSSL embedded TLS
library (wolfSSL, 2015).

Moving beyond lattice-based cryptography
brings us to the supersingular isogeny DiffieHell-
man (SIDH) key-exchange protocol. Microsoft re-
searchers Costello, Longa, and Naehrig (Costello
et al., 2016a) give efficient algorithms for SIDH,
which have been integrated into a patch for
OpenSSL (Microsoft, 2016a). This library also
integrates the SIDH public-key compression algo-
rithms developed by Costello et al. (Costello et
al., 2016b).

5 Possible Alternatives

The protocols described in the previous section
have implementations specifically built for TLS.
Many have been built for OpenSSL, providing
software developers an easy way to integrate
these post-quantum key-exchange protocols into
their applications. In this section, we look at



TLS-Ready Security (bits) Communication (bits) Keygen (ms) Constant Time
NewHope X 199 3,872 0.31 X
FRODO X 130 22,584 2.6 X

LatticeCrypto X 128 3,872 0.21 X
SIDH X 128 660 900 X

wolfSSL NTRU 128 1,128 2.249
NTRU Prime 195 9,802 N/A X

McBits 128 1,046,738 N/A X
Algebraic Eraser 120 1,554 N/A

Ore DiffieHellman 111 1,027,000 N/A

Table 1: Postquantum TLS Analysis

post-quantum key-exchange protocols that, while
promising, are not ready for deployment in TLS.

Code-based cryptography provides an alterna-
tive to lattice-based schemes such as NTRU and
the R-LWE protocols described in the previous
section. The best example of code-based cryp-
tography is McElieces (McEliece, 1978) hidden-
Goppa-code public-key encryption system. Bern-
stein presented a constant-time implementation of
the cryptosystem in 2013. This cryptosystem sup-
ports extremely fast encryption, but the public
keys are far too large for usage in TLS.

Another alternative to lattice-based cryptogra-
phy is group-theoretic cryptography. Because the
computational problems used in these cryptosys-
tems have not been well-studied, interest in non-
commutative cryptography remains for the most
part theoretical. Nonetheless, a key-exchange pro-
tocol, Algebraic Eraser, has been designed for use
in systems with limited computational resources
(Anshel et al., 2006). The parameters given in the
original article were broken by Ben-Zvi, Black-
burn, and Tsaban in 2016, but the protocol is
defined in great generality, and Anshel, Atkins,
Goldfeld, and Gunnells (Anshel et al., 2016) were
able to defeat the attack by giving a new instanti-
ation of the system. Further research is needed to
decide whether this protocol is secure.

As a final key-exchange alternative to lattice-
based cryptography, we discuss multivariate-
quadratic-equations cryptography. This class of
cryptosystems comprises for the most part public-
key signature schemes, but Burger and Heinle pre-
sented a key-exchange protocol based on multi-
variate Ore polynomials in 2014. However, this
cryptosystem has received little scrutiny by the
broader cryptography community, and uses public
keys nearly as large as those in McElieces code-

based system.

6 PQTLS Analysis

In this section, we evaluate the cryptosystems sur-
veyed above. The most important factor for a pro-
tocol is whether it is ready to be deployed for TLS
based on the existence of a constant-time SSL li-
brary. We also analyze the performance of each
scheme based on the communication and key gen-
eration costs for the recommended parameters.

We collect our data in Table 1. All of the proto-
cols discussed in the current implementations sec-
tion 4 except for NTRU are ready for TLS deploy-
ment. Even though NTRU is implemented in wolf-
SSL, the lack of constant-time protections in their
code disqualifies them from being TLS-ready.

Of the cryptosystems ready for use in TLS,
SIDH requires the least data transfer, while Lat-
ticeCrypto provides the fastest key generation.
However, while the communication cost of Lat-
ticeCrypto is less than 6 times that of SIDH, key
generation in SIDH takes over 4,000 times as long
as in LatticeCrypto. Therefore, we believe Lattice-
Crypto is currently the best choice for integration
into TLS.

Most of the schemes analyzed here target the
128-bit security level. However, due to the diffi-
culty of estimating the post-quantum security of
a protocol, some authors choose conservative pa-
rameters, giving a comfortable margin above the
128-bit level. We also note that Algebraic Eraser
is intended for low-cost, resource-constrained de-
vices. As such, the focus their attention on the 80-
bit level, but they do provide parameters for 120
bits of security.



7 Conclusion

7.1 Future Research

This analysis is meant to be a conglomeration of
current knowledge on post-quantum enabled TLS.
However, we have distinctly focused on looking at
key-exchange rather than authentication for all of
the research. There are a large number of inter-
esting applications of quantum secure algorithms
in signature schemes that would likely have much
different criteria than what we showed here.

In terms of potential future research, addi-
tional research on current implementations could
be done by running them on a single system for
a better runtime analysis. As time goes on, there
will likely be more implementations that we did
not mention, and at that time it would make sense
to compare those new ones using the same criteria
and methods. We would like to see more research
done on non-lattice-based cryptosystems, simply
because the security community right now is fo-
cusing very heavily on lattices as a means to quan-
tum security.

7.2 Final Remarks

Integrating a post-quantum key-exchange protocol
into TLS is necessary for preserving the privacy
of todays internet communications. We surveyed
the post-quantum cryptography literature for im-
plementations that are ready to be deployed today,
and found that Microsofts LatticeCrypto library is
the current best choice.

However, future research is likely to produce
new attacks against ring learning with errors key-
exchange. It is important for the cryptographic
research community to continue to investigate al-
ternative protocols. In particular, we need to de-
velop further protocols based on problems besides
lattices, in case the latter are shown to be easy
solved. Supersingular isogeny DiffieHellman is
the most promising non-lattice protocol, but many
other classes of cryptographic systems exist, and
others likely remain to be discovered.

Quantum computers may not be very capable
today, but by planning ahead and integrating post-
quantum security as soon as we can, we will be
ensuring the privacy and integrity of TLS.
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